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HIGH-THROUGHPUT MASS
SPECTROMETRIC ANALYSIS OF

XENOBIOTICS IN BIOLOGICAL FLUIDS

Ray Bakhtiar,* Luis Ramos, and Francis L. S. Tse

Novartis Institute for Biomedical Research, 59 Route 10,

East Hanover, NJ 07936, USA

ABSTRACT

The drug discovery process has been dramatically acceler-

ated with the introduction of combinatorial chemistry for selec-

tion of new lead drug candidates. A central theme underlying

this new technology is the capability to synthesize a myriad of

new chemical entities with randomized structural variations.

While the promise and opportunities are significant, combinator-

ial approaches pose several challenging tasks that must be met

in order to realize the full potential of this technology. One of

the challenges has been to develop fast, sensitive, and reliable

high-throughput analytical methods to support investiga-

tions conducted in animals and humans. These include early

pharmacokinetics screening, metabolic profiling, toxicokinetics,

formulation, and eventually clinical studies. Such methods in

analytical chemistry have the potential to initiate a paradigm
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ORDER                        REPRINTS

transition in drug discovery landscape from rather laborious and

time-consuming steps to that of an accelerated campaign for

lead optimization.

Among the many intriguing avenues, mass spectrometry is

arguably an indispensable analytical tool and a pragmatic

approach for the identification and quantification of pharmaceu-

tical products in biological fluids (e.g., plasma, serum, whole

blood, and urine). Herein, we present a description of several

laboratory procedures that have been successfully deployed to a

diverse collection of issues during drug discovery and develop-

ment. Techniques such as high-throughput off-line sample pro-

cessing, on-line sample extraction, fast chromatographic

separations, and parallel (multiplexed) liquid chromatography in

conjunction with mass spectrometry are discussed.

INTRODUCTION

Since the evolution of pharmaceutical research, (1) the stages of drug

discovery and development have followed three predominant routes: (i) the

systematic and methodical approach by chemists to design and synthesize a

molecule to target a specific molecular system (e.g., ion-channels, receptors,

enzymes, DNA); (ii) the isolation and purification of the active ingredients of

medicinal plants or microorganisms and to screen their spectrum of activity using

in vitro models; or, (iii) the serendipitous discovery of a compound with a novel

pharmacological action (e.g., the accidental discovery of antidepressants). Today,

one of the increasingly popular and complementary approaches for drug

discovery in pharmaceutical industry is to perform massively parallel synthesis in

solution or on a solid support. In addition, with the advent of functional genomics

and proteomics, cell-based assays, and molecular biology, a multitude of

therapeutic targets has been validated (2–9).

With an increasing number of potential molecular targets identified through

the science of functional proteomics and genomics, diverse libraries of new

chemical entities (NCE) have to be generated and evaluated. Consequently, the

rapid growth of combinatorial libraries has posed a need for faster, accurate, and

sensitive analytical techniques capable of large-scale high-throughput screening

(HTS). Although in vitro assays do not necessarily reflect the complexity of the

in vivo interactions; due to their speed and simplicity, these assays have become

an integral part of the screening process. Furthermore, samples generated from

large scale clinical trials along with the ambitious development timelines warrant

the use of high-throughput bioanalysis. Numerous improvements in speed,

sensitivity, and accuracy, augmented with innovations in automation place mass
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spectrometry (MS) among one of the versatile and multi-faceted analytical

techniques available today.

Toward this end, electrospray ionization (ESI) and atmospheric pressure

chemical ionization (APCI) have been valuable for both qualitative and

quantitative screening of small molecules (e.g., pharmaceutical products). This

article is intended to discuss a brief overview of techniques involving high-

throughput mass spectrometry (HT-MS) in conjunction with some of the typical

problems presented to the analytical pharmaceutical chemist.

Due to space limitations, we can only present what we perceive to be the

most significant and recent applications for rapid quantitative analysis of small

molecules in biological fluids. In addition, it is our view that the majority of

drug discovery efforts by the pharmaceutical industry are likely to focus on

small molecule agents. For detailed technical descriptions and additional

applications, the reader is referred to the corresponding citation(s) throughout

this manuscript.

IONIZATION PROCESSES

MS is playing an increasingly visible role in the molecular characterization

of combinatorial libraries, (10–12) natural products, (13) drug metabolism and

pharmacokinetics, (14–18) toxicology and forensic investigations, (19) and

proteomics (20–26).

The utility of ESI lies in its ability to generate ions directly from the

solution phase into the gas phase. The ions are produced by application of a

strong electric field to a very fine spray of the solution containing the analyte. The

electric field creates highly charged droplets whose subsequent vaporization (or

desolvation) results in the production of gaseous ions (27,28). The fact that ions

are formed from solution has established the technique as a convenient mass

detector for liquid chromatography (LC=MS) and for automated sample analysis.

In addition, ESI-MS offers many tangible benefits over other mass spectrometric

methods including the ability to qualitatively analyze low molecular weight

compounds, inherent soft-ionization, excellent quantitation and reproducibility,

high sensitivity, and amenability to automation.

Analogous to the ESI interface, atmospheric pressure chemical ionization

(APCI) or heated nebulizer (HN) induces little or no fragmentation to the analyte.

Therefore, the APCI spectrum also tends to be simpler in interpretation than the

traditional electron ionization (EI). Generally, volatile and thermally stable

compounds can be subjected to LC=APCI=MS analysis. In quantitative analysis,

APCI provides a higher (i.e., in terms of linearity) dynamic range than ESI and it

is considered rugged, easy to operate, and relatively more tolerant of higher buffer

concentrations (i.e., fewer matrix effects). In ESI, at about 1075 M and higher, the
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ion signal becomes fixed and independent of sample concentration (plateauing

effect) and may exhibit non-linearity at higher concentrations (29,30). In contrast,

APCI can offer a wider linear dynamic range. For example, in our laboratory

(data not shown) we have routinely developed and validated racemic reversed-

phase LC=APCI=MS=MS assays ranging from 1.0 ng=mL to 10,000 ng=mL with

a correlation coefficient of > 0.996. Furthermore, APCI can accommodate flow

rates of up to 2.0 mL=min and, thus, it is considered mass sensitive as opposed to

ESI, which is concentration sensitive. In contrast to ESI, APCI is not suited for

the analysis of biopolymers and thermally labile species.

In the APCI process, electrons originating from a corona discharge needle

(with a typical current between 1–5 mAmp) ionize the analyte via a series of gas-

phase ion-molecule reactions. For example, in the positive-ion mode, the

energetic electrons start a sequence of reactions with the nebulizing gas (typically

nitrogen) giving rise to nitrogen molecular ions (28). Depending on the

composition of the HPLC mobile phase, ions such as [H2OþH]þ,

[CH3OHþH]þ, [NH3þH]þ, and=or [CH3 CNþH]þ are formed via series of

ion-molecule reactions with the nitrogen molecular ions. Subsequently, additional

ionization is initiated by exothermic proton transfers from the protonated solvent

ions to the neutral analyte molecules, yielding [analyteþH]þ, [analyte

þCH3OHþH]þ, [analyteþNH3þH]þ ions, etc. Greater sensitivity is attained

if the solvent is polar and contains ions through the addition of an electrolyte. The

desolvation process is then further enhanced by the heating element within the

APCI assembly, which is maintained at 300–550�C. Since the direct introduction

of higher HPLC flow rates (e.g., 1.0 mL=min for a 4.6 mm, i.d. column) is

amenable to APCI, chromatographic dead volume is less of an issue (31).

In general, because the chromatographic concentration increases as an

inverse function of the square of the column diameter, lower i.d. HPLC columns

could be employed in quantitative trace analysis (e.g., �10 pg=mL). One of the

drawbacks of APCI is its lack of compatibility with 1.0, 0.50, 0.32, and 0.18 mm,

i.d. columns with typical respective flow rates of 50, 15, 6, and 2 mL=min.

Therefore, with a mass sensitive device such as APCI, no sensitivity gains are

realized with smaller columns or flow rates. In contrast, ESI is compatible with

miniaturized columns and amenable to sample-limited scenarios such as

biochemical and biotechnological applications (31,32).

HIGH-THROUGHPUT OFF-LINE SAMPLE PROCESSING

FOR QUANTITATIVE ANALYSIS

One of the critical steps in qualitative and quantitative analysis is the

sample processing procedure. Sample preparation steps can affect specificity,
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sensitivity, accuracy, precision, and throughput of a bioanalytical procedure. In

addition to development and optimization of the chemistry involved in sample

processing, the use of semi-automated or fully automated protocols has been

implemented in recent years (18). The popularity of off-line sample processing in

batch-mode has dramatically improved the throughput of this rate-limiting step.

Generally, there are three commonly used approaches for off-line sample

processing: solid-phase extraction (SPE), liquid-liquid extraction (LLE), and

protein precipitation (PPT). All the above methods have been successfully used in

conjunction with robotics for achieving an increase in sample preparation

throughput. For example, Figure 1 depicts a schematic representation of a semi-

automated sample preparation that can accommodate SPE, LLE, or PPT

procedures. This scheme has been validated for use with SPE, LLE, or PPT in

a 96-well plate format for the analysis of pharmaceutical products in biological

matrices (e.g., whole blood, plasma, serum, and cerebral spinal fluid) in our

laboratory.

In the 96-well SPE format, similar to the traditional manual procedure,

issues such as the nature of the bonded-phase (e.g., mixed phase cation exchange,

C18, C8, etc.), solvent strength to condition, wash, elute, and chemical

characteristics (e.g., solubility, presence of the key functional groups, etc.) of

the analyte(s) need to be addressed. Some of the most commonly utilized robotic

modules for the 96-well SPE procedure are Tomtec Quadra (Tomtec, Hamden,

CT, USA), Packard Multi-Probe (Packard Instruments, Meriden, CT, USA), and

Tecan (Durham, NC, USA) units. For example, Tomtec Quadra has been

successfully adopted in the development and validation of several off-line SPE

assays in whole blood, (33) plasma, (34–36) and urine (37,38) followed by MS

detection. Likewise, the feasibility of a Tecan system for the quantification of a

neurokinin-1 (NK-1) antagonist in clinical studies was reported by Schmid and

co-workers. (39) A lower limit of quantification (LLOQ) of 0.10 ng=mL was

attained using a LC=ESI=MS=MS method.

The Packard Multi-Probe liquid handling workstation has also shown

promise for off-line SPE procedures involving plasma (40–42) and serum

(43,44). In addition, this unit, as well as the Tecan system, can be programmed for

the initial sample transfer step from vials to the 96-well blocks, buffer addition (if

applicable), and to aliquot internal standard. The implication of the above

capabilities is a significant reduction of time and labor, which is required for the

entire sample processing procedure. Possible technical problems, such as carry-

over by fixed tip pipettes used to aliquot the biological fluid, can be alleviated by

incorporation of several wash cycles or their replacement with disposable pipette

tips. In addition, possible inaccurate transfer of samples from the collection tubes

to the 96-well blocks due to pipette tip clogging by endogenous protein clots or

lipid layers should be kept in mind.
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Recently, Watt and co-workers (45) proposed the storage of the plasma

samples at 7 80�C and thus precluding fibrinogen clot formation. A

centrifugation step at 14,000 rpm prior to sample transfer has been suggested

by Rossi and co-workers (46). Recently, the application of higher density plate

formats such as 384-well SPE has been realized (47,48). While higher density

plates (e.g., 384- and 1536-well formats) can dramatically increase sample

throughput, there are several technical caveats that warrant close scrutiny prior to

their universal adaptation in conjunction with LC=MS technology. First, the

modification of exiting 96-well format laboratory technology to higher density

plates should be considered. Second, higher density plates can accommodate

smaller volumes of sample, which may require the assay to be run at lower

LLOQ. A transition to smaller internal diameter columns (e.g., 1.0 mm, capillary

LC) is an option to attain lower LLOQ for trace quantitative analysis. However,

columns with smaller diameters tend to be less rugged when subjected to large

number of injections of biological extracts. Third, re-injection of a sample (that is

not uncommon during routine analysis) may not be viable due to the lack of

adequate volume. We envision all the above issues to be resolved in the near

future.

Liquid–liquid extraction is another well-established and attractive

approach, which has been useful for the analysis of xenobiotics in biological

fluids. LLE can be designed to be highly selective yielding clean sample extracts.

This is particularly critical in minimizing ion-suppression by co-eluting matrix

components, when an ESI interface (it appears that ion-suppression is not

a major determinant for signal loss in APCI) is used for the LC=MS analysis

(49–52). The ion-suppression is exacerbated in cases where fast chromatography

results in low peak capacity factors (e.g., k’ � 2). Based on a series of

experiments reported by King and co-workers, the order of ESI response

suppression is PPT> SPE>LLE, where liquid-liquid extraction leads to the least

amount of analyte ion loss (53). Till 1999, the number of reported semi-

automated LLE procedures was scarce. However, since then, there has been an

increasing number of articles published in this area (54–65).

Recently, we described a HT sample preparation procedure in conjunction

with racemic LC=APCI=MS=MS analysis for methylphendiate (MPH), a

dopamine transporter inhibitor, with a LLOQ of 50 pg=mL (65). A semi-

automated robotic method using liquid-liquid extraction (LLE) in a 96-well plate

format was developed and validated. The correlation coefficients were �0.998 for

MPH indicating good fits of the regression models over the range of the

calibration curves.

Similarly, we applied the same LLE approach for the analysis of MPH

enantiomers in human plasma using a reversed-phase chiral LC=APCI=MS=MS

analysis. Vancomycin based chiral stationary phase was used to separate the d-

(the pharmacologically active antipode) and l-MPH under 7.5 min. The LLE
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yielded clean sample extracts and aided in the longevity of the chiral column.

Consequently, the vancomycin-bonded stationary phase exhibited excellent

performance with no separation deterioration observed after � 2500 injections

per column. Figures 2 and 3 show the representative LC=APCI=MS=MS ion-

chromatograms obtained for the MPH and its stable isotope internal standard for

the racemic and the chiral assays, respectively. Both methods were routinely used

in the quantification of MPH or its enantiomers in several toxicokinetic and

clinical studies. For example, Figure 4 depicts a plot for the dose-normalized area

under the curve (AUC), subsequent to 13 weeks of daily oral administration of

80 mg=kg of racemic MPH in female and male rats. The HT-LLE method

followed by chiral chromatography-tandem mass spectrometry clearly revealed

gender specificity with respect to MPH exposure. Female rats in general showed

higher exposure of MPH than the males. Regardless of the gender, rats dosed

with MPH racemate (80 mg=kg=day) exhibited � 2–3 times higher concentra-

tions of the d- than the l-isomer.

Figure 2. MRM-chromatograms resulting from the analysis of 0.050 ng=mL of MPH

and internal standard (injection volume: 40 mL). Panels A and B correspond to MPH

(MRM transition: m=z 234.5 ! 83.9) and the internal standard (MRM transition: m=z

243.0 ! 83.9), respectively. Molecular structures of both compounds are shown.
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Protein precipitation using acetonitrile is one of the commonly used

procedures for treatment of plasma samples in drug analysis. Recently, several

groups reported the application of PPT using high-throughput bioanalysis

protocols in conjunction with LC=MS=MS detection (45,66–68).

Briefly, an accurate amount of each sample is transferred from the

collection tube to a 96-well block. The sample is spiked with the internal standard

and vortexed. An appropriate volume of the precipitation solvent (the volume and

composition of the precipitation solvent is optimized by the analyst) is added to

the sample, mixed, and centrifuged for 10–15 min. The speed of the mixer is

adjusted to prevent any possible leakage between the wells. Subsequent to

centrifugation, a multi-channel pipettor is then utilized to transfer the supernatant

layer into another clean 96-fighting fit block without disturbing the protein pellet.

The samples can be either directly injected for quantification, or evaporated

and reconstituted with the appropriate mobile phase prior to LC=MS analysis

(Figure 1).

An alternative to sample centrifugation in PPT is sample filtration in a 96-

well plate format (69,70). This step can aid in the removal of the larger particles

Figure 3. Representative LC=APCI=MS=MS ion-chromatograms resulting from the

analysis of 2.18 ng=mL of racemic standard þ internal standard (injection volume: 30 mL).

Panels A and B correspond to the MPH and its internal standard, respectively. The

concentration of the ammonium trifluoroacetate (TFAA) was 0.05% (by weight). The

HPLC flow rate was 1.0 mL=min.
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(e.g., protein aggregates, particle sizes �10 mm) that may otherwise render

technical difficulties during analysis. Filters such as 3M EmporeTM (part number:

6060; 3M, Minneapolis, MN, USA) or UNI-FILTER GF=B glass fiber (part

number: 7700-1803; Whatman, Clifton, NJ, USA) 96-well plates are among a

number of options available for protein filtration. The feasibility of 96-well small

volume PPT to remove precipitated proteins, thereby eliminating the centrifuga-

tion step, has been described (70).

As mentioned earlier, ESI signal suppression due to co-eluting matrix

components in supernatants (53) can compromise the sensitivity, accuracy, and

precision of the assay during validation. Thus, APCI or heated nebulizer is the

preferred choice to alleviate such a problem. However, APCI will not be

amenable to thermally labile analytes (71). Alternatively, longer isocratic elution

chromatography (higher peak capacity factor) or gradient elution LC can be

adopted to separate the endogenous matrix components from the analyte(s) of

interest (49). Ultra-fast reversed-phase HPLC in isocratic or gradient elution

modes has been gaining popularity for rapidly (i.e., a shorter LC=MS injection-

to-injection cycle) achieving sufficient chromatographic resolution (72–81).

Various column technologies such as nonporous, porous ultra-microparticles

(�2 mm), monoliths, and superficially porous particles (� 5 mm) offer specific

advantages and disadvantages (82). For example, Figure 5 shows representative

Figure 4. Mean dose normalized AUC (ng.h=mL)=(mg=kg=day) versus dose

(mg=kg=day) profiles of rat plasma d-MPH and l-MPH subsequent to daily oral

administration of 80 mg=kg of racemic MPH for 13 weeks.

516 BAKHTIAR, RAMOS, AND TSE

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
8
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

LC=APCI=MS=MS ion-chromatograms resulting from the analysis of 2.0 ng=mL

(LLOQ) of ketoconazole and its internal standard. Panels A and B correspond to

the ketoconazole and the internal standard, respectively. A column with a

continuously tapered bore over its 25 mm length from 2.0 mm (i.d.) at the inlet to

0.50 mm (i.d.) at the outlet was utilized (68). According to the manufacturer, the

column used in our study has a dead volume of ca. 40 mL. Incorporating the flow

rate of 0.40 mL=min, an estimated to (column dead time) of 10 s is obtained.

Therefore, based on the retention time of ketoconazole (tR� 17 s), a retention or

capacity factor (k0) of �0.70 can be estimated for the ion-chromatogram shown in

Figure 5. (68)

Several examples on application of HT-enantioselective liquid chromato-

graphy-mass spectrometry in analysis of chiral pharmaceutical products have

been described (83). In spite of the MS=MS selectivity, it is important to keep in

Figure 5. Representative LC=APCI=MS=MS ion-chromatograms resulting from the

analysis of 2.0 ng=mL (LLOQ) of ketoconazole þ internal standard (using the Michrom

Magic BulletTM Column; injection volume: 10 ml). Panels A and B correspond to the

ketoconazole and the internal standard, respectively.
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mind that fast turn-around LC=MS=MS assays can be prone to interference. For

example, during the analysis of in vivo samples, the absence of adequate

chromatography (i.e., co-elution of analyte and possible metabolites) coupled to

MS detection may yield interference, which is not easily detected during the

validation process. Recently, Jemal and Xia (84) demonstrated the possibility of

in-source dissociation of biotransformation products yielding the parent

compound. Therefore, false positive values in terms of post-dose analyte(s)

concentrations, which could stem from the in-source dissociation of the putative

metabolite(s) yielding identical MS=MS transitions, can result. Hence, during the

analysis of post-dose biological samples, a clear understanding of the identity and

abundance of in vivo biotransformation products is essential.

HIGH-THROUGHPUT ON-LINE SAMPLE PROCESSING FOR

QUANTITATIVE ANALYSIS

In recent years, high-throughput and automated on-line sample extraction

approaches have provided viable alternatives to improve efficiency for sample

processing. We have capitalized on this approach, and reported the utility of an

on-line turbulent flow chromatography (85–88) unit coupled to MS for the

quantitative analysis of terbinafine (89) and ketoconazole (68) in human plasma.

According to the well-established mathematical approximation by van

Deemter, LC optimization can be achieved by reducing zone broadening and=or

altering relative migration rates of the analytes. At relatively low mobile phase

flow rates (i.e., 0.5–1.0 mL=min for 4.6 mm, i.d.), optimum chromatographic

separation and efficiency may be achieved. The efficiency is, in part, governed by

the mass transfer rate for solute molecules to diffuse in and out of the stationary

phase. Furthermore, a majority of chromatographic separations are conducted

under laminar flow, where the flow profile of the mobile phase has a parabolic

shape and, consequently, solutes at the front of the band exhibit a mass transfer

rate different from that of the solutes at the trailing edges. However, in turbulent

flow using large particle diameters (to reduce column back-pressure), the solvent

front exhibits a plug nature rather than a parabolic shape. The combination of

large particle size and higher flow rate results in eddies which facilitate solute

distribution and equilibration into the stationary phase (e.g., an increase in

diffusion rate). Thus, the net effect of turbulent flow chromatography is a flow

regime beyond the van Deemter approximation.

In turbulent flow LC, single- and dual-column configurations have

commonly been reported. In both cases, an extraction column of various

functionalities and particle size (30 mm in diameter or higher) are used. A typical

dimension of the extraction column can be 5061.0 mm (i.d.), although smaller

lengths can also be attempted. In the single-column configuration, a sample
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containing the analyte and internal standard is loaded on the extraction column at

a high linear velocity (e.g., 5.0 mL=min). The analyte is retained via rapid

diffusion into the packing, while other matrix components are washed into waste

using an aqueous mobile phase. Subsequently, the analyte is eluted by a step or

linear gradient and detected by the mass spectrometer. In the dual-column

configuration, a standard analytical column (e.g., C18 or C8; 5064.6 mm, i.d.) is

placed after the extraction column to improve chromatographic separation and

sample clean-up. In our laboratory, we have successfully validated and applied

the dual-column configuration (Figures 6 and 7) to perform racemic reversed-

phase (68,89) as well as chiral LC=MS=MS analysis. In the latter assay, we

replaced the second column by one containing a chiral stationary phase. A full

account of the assay optimization and validation of an on-line achiral-chiral

column configuration will be reported elsewhere.

Direct sample injections have also been accomplished by using on-line C18

(4 mm, i.d.) guard cartridges for cytochrome inhibition studies (90–92), capillary

SPE(93), C18-alkyl-diol-silica restricted access phase (94), and PROSPEKTTM

SPE modules (95–98). A caveat for all the direct sample injection assays is an

understanding of the analyte stability in the biofluid during the analysis period.

Nonetheless, an increasingly growing body of literature (99–107) is suggestive

that direct injection of post-dose biological fluids for quantification purposes has

become a routine and efficient procedure.

APPLICATIONS OF PARALLEL LIQUID

CHROMATOGRAPHY COUPLED TO MASS

SPECTROMETRY

An additional enhancement in the throughput of an LC=MS method is

achieved by devising a parallel loading or multiplexed experiment (Figure 8). In

this design, a four- or eight-channel multiplexed configuration is used to analyze

multiple sample streams on a single mass spectrometer. For example, in the four-

channel configuration, a pump, a splitter, and individual injector valves are

adjusted to deliver equal mobile phase flow rates to each column. It is crucial to

maintain the same type of guard columns, HPLC columns, and plumbing for all

channels to ensure nearly equal back-pressures. The effluents from four identical

HPLC columns are then directed to each corresponding UV detector. The UV

detector output provides additional information on the purity of the sample (e.g.,

qualitative analysis), but it is not an essential component of the unit for

quantitative analysis. The effluent from each individual channel is then

introduced to a splitter, and a fraction (e.g., 50–100 mL=min) of it is directed

to the MS ion source. The MS ion source known as MUXTM (Micromass

UK Limited, Manchester, England) consists of an ESI with four- (Figure 9) or
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eight-sprays. A co-axially positioned cylinder and stepper motor allows only one

of the sprayers to be sampled by the mass spectrometer at any given time. For this

system to function properly, all the above hardware components need to be

operative in an integrated and synchronous fashion. The minimum duration

needed to step from one sprayer to another (inter-spray step or switching time) is

50 ms. The minimum dwell time for each channel is about 50–100 ms. The total

cycle time is about 1.2 s. Generally, a time-of-flight (ToF) or triple quadrupole

MS is used for detection. The latter is commonly interfaced to a four-channel

configuration. However, due to a high acquisition rate offered by ToF analyzers

(>10 spectra=s), this instrument is available for use with either configuration.

The triple quadruple mass spectrometer offers a wider dynamic range than the

ToF instrument for quantitative analysis.

Currently, the triple quadrupole analyzers are the most popular and rugged

instruments for quantitative analysis when used in the multiple-reaction-

monitoring (or selected-reaction-monitoring) mode. On the other hand, ToF

analyzers are capable of obtaining good quality spectra with moderate to high

resolution, accurate mass measurements, fast scanning ability, and is suitable for

qualitative analysis. Regardless of the detector choice, it is highly recommended

that the possibility of any sample carry-over to be assessed (this is particularly

important at high concentrations). Recently, several groups have reported

Figure 7. Representative LC=APCI=MS=MS ion-chromatograms resulting from the

analysis of 2.0 ng=mL (LLOQ) of ketoconazole þ internal standard (using the turbulent

flow LC system; injection volume: 20 ml). Panels A and B correspond to the ketoconazole

and the internal standard, respectively.
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(108–112) the feasibility of parallel LC=MS in conjunction with the MUXTM

technology. It is evident that the parallel LC=MS approach can increase the

throughput by a factor of 4 and 8 for the four- and eight-channel configurations,

respectively.

In addition to the multiple sprayer technology (vide supra), a host of other

clever bioanalytical approaches have been reported (113–120) to gain an increase

in sample throughput. Janiszewski and co-workers (113) devised a multiple

injector-dual column configuration module using one autosampler to perform

rapid metabolic screening of samples obtained from caco-2 and hepatocyte

incubations. Jemal et al. (114) measured the plasma concentration of nefazodone,

a selective 5-HT2 antagonist, and its three metabolites using a dual-

autosampler=dual-column system with a single mass spectrometer. Synchronized

multiple-autosampler units coupled to a single HPLC column (115) or multiple-

column configuration (116,117) can be easily retrofitted to an existing mass

spectrometer. In addition, multiplexed designs allow adequate chromatographic

separation (if needed) without sacrificing efficiency (114).

Figure 9. Schematic diagram of a four-channel parallel electrospray interface ion source

or MUXTM.
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The multiplexed or parallel strategy has also been incorporated into the on-

line extraction assays (118–120). Generally, when the analyte from the first

injection is eluted and detected by the MS, a valve is switched to the second

column for a similar measurement. In the meantime, the first set of extraction and

analytical columns is washed, equilibrated, and loaded with the biofluid (e.g.,

plasma). This cycle of staggered parallel separation is also referred to as the

ternary-column system (118).

THE FEASIBILITY OF AN AUTOMATED BLOOD

SAMPLING SYSTEM IN COMBINATION WITH HT-MS

In spite of the fact that the above technologies can increase efficiency

during sample preparation, the initial transfer of sample (e.g., plasma) aliquot

from the collection tube to the 96-well plate remains to be the bottleneck. In our

laboratory, the process of manual uncapping, transfer of sample aliquot, and

capping the vial requires about 20–30 min for each 96-well plate. In addition,

manual blood collection after regular business hours can be a limiting factor.

Recently, we described a preliminary study on the feasibility of an automated

blood sampling system (Culex) in conjunction with LC=MS=MS analysis for the

quantification of ketoconazole in rat, subsequent to an oral dose of 10 mg=kg of

the test article (121). The ketoconazole assay was a validated semi-automated

method involving PPT in 96-well format to attain high-throughput sample

preparation (68).

Figure 10 shows the front views of the Culex unit and its animal housing.

One of the unique features of this system is the ability of the rat to freely move

within the cage while attached to the catheter line. In this design, the catheter line

is connected to a counter balance arm with sensor, which triggers the cage’s

turntable to rotate in an opposite direction to the rat movement. This action results

in maintaining the structural integrity of the catheter line without twisting and

stretching. The metabolic cage is also capable of urine and feces collection in a

separate fashion that remains out of the reach of the animal and any possible cross

contamination. The urine is funneled via stainless steel mesh to a glass vial

maintained at �4�C. The feces are diverted down through a steep incline, stored

outside the metabolic cages, and separated from the urine collection path.

The drawbacks of the above particular design include its lack of feasibility

to studies involving larger animals (e.g., dog, and monkey). Such studies could be

amenable if the subject is tethered or restrained in some fashion (e.g., a primate in

a chair). An alternative approach involves the use of robotics (e.g., Packcard

Multi-Probe) for the direct transfer of plasma or serum to the 96-well plate.

Furthermore, currently, a fully-loaded Culex system will house up to four animals

(e.g., 1 rat=metabolic cage) which makes it unsuitable for larger scale studies.

524 BAKHTIAR, RAMOS, AND TSE

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
8
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

Although a costly approach, the latter issue can be addressed by using several

Culex units.

The Culex system has the potential to be integrated into the so-called

‘‘cassette,’’ ‘‘N-in-one,’’ or ‘‘cocktail’’dosing pharmacokinetic studies, at the early

Figure 10. Front view of the Culex unit. This particular unit accommodates up to 4 rats

(one rat per cage) and collects the blood into refrigerated vials that can be transferred to a

96-well plate.
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stages of drug discovery (122–124). In these studies, structurally analogous

classes of drug candidates are administered simultaneously in a laboratory

animal; and consequently, the estimated AUC values are calculated and

compounds are prioritized. The ‘‘N-in-one’’ dosing experiment requires smaller

number of animals and is more efficient than the traditional one compound per

dose per animal. Several caveats that accompany the above approach, include an

increase in LC=MS method development and data analysis and possible drug-

drug interactions yielding false-positives and distortion of pharmacokinetic

profiles (8). For example, inhibition of metabolism can occur when drugs

compete for the same metabolic pathways and, thus, elevated AUC levels may be

observed. Hence, alternative routes can be taken which include single-

dosing=multiple-analysis and ‘‘sample-pooling’’ to expedite pharmacokinetic

measurements (125,126).

CONCLUSIONS AND FUTURE PROSPECTS

A myriad of published reports has now proven the broad applications of

modern MS-based techniques to the analysis of small molecules. While the focus

of this article was quantitative analysis, the reader should bear in mind that

LC=MS and tandem MS techniques are also utilized as sensitive and robust

analytical tools in qualitative measurement of xenobiotics in biological fluids.

While in the spectrophotometric detection, potential for interference from

endogenous species and mobile phase additives may exist, the MS selectivity

prevails for trace qualitative analysis.

The significance of early PK studies has been well established among the

pharmaceutical industry (127). The major determinants of PK parameters are

absorption, distribution, metabolism, and excretion (ADME). Toward this end,

qualitative mass spectrometry has enabled medicinal chemists to address issues

such as metabolic stability and modification of metabolically vulnerable moieties

(soft-sites) of the lead drug candidates, in order to optimize their PK and

pharmacodynamic attributes (128). Normally, several iterations between drug

metabolism scientists and synthetic chemists are required to link and improve

these molecular properties (129).

Techniques, such as automated data-dependent tandem mass spectrometry,

will continue to be a powerful tool for acquiring simultaneous full scan MS and

MS=MS within a single chromatographic run (130–132). In this mode of

operation, the instrument collects full scan MS spectra and switches to tandem

MS mode when a preset ion threshold is exceeded. This cycle continues till the

end of the HPLC run and can provide molecular weight and in-depth structural

information from a single injection.
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In contrast to quantitative analysis, which often entails the analysis of large

quantities of samples, structural elucidation involves a smaller number of

samples. However, the rate-limiting step in qualitative mass spectrometry has

been the interpretation of MS and tandem mass spectrometry data obtained from

in vitro and in vivo specimen. To this end, the design of automated software

algorithms and correlation analysis for the detection of phases I and II

biotransformation products have been developed (133–135). Nonetheless, these

software packages are not meant to be a replacement for the scientific expertise

and experience of a trained analyst. Thus, it is critical to have a sound

understanding of ADME concepts and an appreciation of the judicious use of any

automated software package. Consequently, it is recommended to perform

manual inspections of the raw MS and MS=MS output to avoid possible over-

looking of any key pieces of information.

Other novel technological approaches such as accurate mass measurements

using quadrupole time-of-flight (Q-ToF) mass spectrometry, (136–138) rapid

online metabolic screening, (139) chip-based quantitative and qualitative

analysis, (140–142) and drug metabolite identification using on-line

LC=NMR=MS (143,144) will continue to show to be powerful and promising

additions.
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